FINECone[™]

振膜/鼓纸振动的有限元模拟

参考手册

注意:如果将 PDF READER 的"平滑 文本"选项去掉, 将会解决显示汉字 太淡的问题。 这个参考手册将介绍 FINECone 设计扬声器的基本步骤。FINECone 基本 理论为有限元素分析法(FEM)。

FINECone 具有模拟扬声器主要特性的功能。

- 1. 定义 geometry 几何形状。由 DXF 格式文件输入;
- 2. 定义 material properties 扬声器组件的材料特性;
- 3. 定义 <u>electrical parameters</u> 电气参数。由 FINEMotor 输入;
- 4. 定义 lumped parameters 集中元件参数。由 FINEMotor 输入;
- 5. 定义 <u>acoustical parameters</u> 振动系统参数;
- 6. 定义 <u>frequency range(s)</u> 频响范围;
- 7. calculation 改变任何数据,系统会同时自动计算出结果;
- 8. post-processing 显示计算结果;
- 9. 系统自动完成所有的有限元素模拟。

FINECone 助手

该助手可以引导你执行有限元素模拟(FEM)程序。

FINECone Wizard	Ctrl+W	
FINECone Wizard	- Step 1 of 6: Basic project information	×
Project name: (required) Save in:	NewProject C:\Program Files\LoudSoft\FINECone\Project\NewPr Target path and name	
✓ Base this pr Template Des 1inch Silk Dor 5½ Woofer La	roject on a template (select from the list below): scription me arge Dust Cap	
	< <u>B</u> ack Finish Cancel Help	

图1

注意:存文件时,你可以选 FINECone Templates (*.WTE),从而将一个 文件存为模板文件。 选择 Project Information Window 设计信息视窗。它将出现在左上角。

Show Project Information

		B	
- General project properties			
Project description: 165 Wool	fer-Surround problem @ 1300Hz		
Project Type: Cone			
C Display simple model withou	ut breakup		
 Display FEM results with bri 	еакир		
Frequency range			
	Number of frequencies:		
From: 20 Hz to: 20	000 Hz 122 🛨		
		i i i	
Apply	Advanced frequency settings		
Mechanical	Electrical		-
Geometrical properties	Re: 6 Ohm	On-axis distance to speaker: 1000 mm	
	Le1: 0.2 mH	Number of Angles: 1	
Material properties	Le2: 0.23 mH	Maximum Angle: 30 * Apply	1
	Ber E.E. Ohm	Points are on a circle (constant distance to source)	-
		C Deinte and an a statistic franchist fatores to be(fat)	
Lumped parameters	BI: J6 Im	 Points are on a straight line (constant distance to baffle) 	
		distance of continent (
	Advanced settings	Advanced settings	

图 2

几何模型(关于 DXF 格式文件输入)

所建扬声器单体震动系统的模型必须是圆形中心轴对称的。我们只用到右半边。图形最左边那一点在实际扬声器单体的对称轴上。它在图形上的坐标是 X=0。通常情况下,这一点是防尘盖的中心点。

用标准的 CAD 系统做的 DXF 格式文件,可以直接输入到 FINECone。但要注意,该几何模型只能由单一的直线和弧线组成。

系统支持 AutoCAD 12 格式的 DXF 文件。因为这是工业标准(也可以用另一个免费软件: IntelliCAD 2000。可以在网站<u>www.cadopia.com</u>下载。这个软件可以建立与 AutoCAD 格式匹配的 DXF 文件)。

注意, 鼓纸的厚度不是在 DXF 文件中设置, 而是在 FINECone 的 Material Properties 材料中设置。其它组件也一样。

下面的图 3 显示一个典型的喇叭,和它的 DXF 文件(右半边)。重要的 是,在贴防尘盖的地方,鼓纸被分割开。通常是 2 条或更多的直线或弧线。在 贴弹波的地方,音圈架也做同样处理。

图 3. AutoCAD 图------左:实际几何模型 – 右: DXF 线和弧几何模型

DXF 帮助

尽管 FINECone 可以查找 DXF 错误,我们最好还是按照以下规则画图。

- 1. 用 AutoCAD v12 DXF 格式(ASCII);
- 2. DXF 必须设置高精确度:小数位数大于 8,最好是 16;
- 3. 只能用单一的直线和弧线;
- 4. 交叉点必须结合于一点;
- 5. 在 AutoCAD 中, 划线前先确定出现"端点"方框。
- 当直线或者弧线有相交的情况出现时,所有线都应被分割开,并用点相 连(不能保留原有直线和弧线);
- 7. 为每个组件建立一个层。鼓纸, 悬边, 防尘盖, 音圈支架, 音圈和弹波 各为一层。最简单的做法是修改现成的文件, 如 6_5 Woofer Large Dust Cap.dxf。因为在这个文件中, 所有层都已经建立。
- 8. 不可在 DXF 图中加入维数,厚度,或文本。

可以用大量线段画图。没有线段数量的限制。上例中的弹波就包括 34 个 直线和弧线。

图 4

DXF 输入

FINECone 会自动检查输入的 DXF 文件,并找到一般性错误。 图 4 左下角的 Status 窗口显示:该图形可以用来进行分析计算,但是得到的结果一定不对。或者说,FINECone 将对这个 DXF 图进行有限元素模拟(FEM),但是图中的几处错误会让模拟出来的结果毫无用处。

图 4 中,防尘盖两端被标记出两个红色的小圆圈。这说明,防尘盖没有完 全连接到鼓纸/振动膜上。造成这种现象的原因通常是,振动膜弧线在连接防尘 盖弧线的那一点没有断开。只有振动膜弧线断开为两段,它才可以提供端点来 连接防尘盖。弹波也被标记了红色圆圈。这是因为弹波与音圈支架间存在同样 的问题。

如果你的 DXF 文件每一层都用 FINECone 默认的名字,那么该 DXF 文件 就可以直接输入进 FINECone。

否则,需要选取左边的组件按钮(图4中振动膜 diaphragm 按钮被按下, 所以图中的振动膜弧线变红),然后从下拉菜单中选取对应的名字。

Tools/Program Options 工具/选项

在 Tools/Program Options 工具/选项中, 你可以更改 DXF 各层名字的默认值,设置默认文件和模板。如果在做 DXF 文件地时候,使用这些默认的各层 名字,将会使文件地输入更加便捷。

nter the default laye	er names that FINECone should search for:			
Component:	Default drawing layer name:			
Diaphragm	Diaphragm			
Surround	Surround			
Dust cap/Dome	Dustcap-Dome			
Former	Former			
Voice coil	VoiceCoil			
Spider	Spider			
Whizzer	Whizzer			
Magnet	Magnet			
Pole	Pole			

图 5

DXF 输入并设置机械特性

在实际应用中,我们需要对 FINECone 进行一些分析。不论直线或弧线的 几何形状怎么变,FINECone 将保持它们的机械特性。但是,如果直线或弧线 的数量改变了,就需要我们手动输入新增直线或弧线的机械特性(在当前层 中)。

Material Properties 材料特性

FEM Materi	ial proper	ties		×
Select com	ponent:	Diaphragm 🔽	1	
Select segn	nent(s) in c	omponent:		
Number	Tupe:	Start point	End point	Massin
1 2 3	Arc Arc Line	(16.25, 28.18) (29.50, 39.82) (41.23, 46.97)	(29.50, 39.82) (41.23, 46.97) (61.50, 57.30)	1.020014 1.234244 2.973533
Properties fo	or selected	segment(s):		
Thickness ((h): 0.15	0000 n	nm FEM mass	5.227790 g
- Material p	roperties: -			
Descriptio	on:	Aluminium (sheel	t) ×	Set as project default
Young's N	Aodulus (E)	: 7500000000	N/m²	Apply
Mass den	isity (rho):	2700.000	kg/m³	
Poisson's	number (ni	a): 0.330000		Material Data
Damping	(delta):	0.010000		OK Cancel

图 6

图 6 中显示了扬声器各声学组件的材料特性。

首先,必须指定组件的壁的厚度 (h)。(注意:所有的线段可以有不同的厚度,这使得模拟胶水粘合处或者直线斜度鼓纸成为可能)

接下来是4个主要的参数:

- 1. E-modulus 或 Young's Modulus(杨氏模量) 是以 MPa 或 N/m²为单位 的材料的刚性;
- Mass Density(质量密度) (rho)是以 kg/m³为单位的材料的质量密度。 作为比对,水的质量密度值是 1000 kg/m³;
- **3**. Poisson's number (nu) 是材料的压缩系数的量度。如果不知道,可以用 默认值 0.33;
- 4. Damping (delta) 是一个指定材料内阻尼(损失)的参数。其最大值是 1.00。

Material Database(材料数据库)

Material Data 是一个包含很多标准材料的数据库。你可以用一个已知材料 开始作你的模型,并且尝试去猜测未知的材料。在下面也能看到

Description:	Young's	Density	Poissor	ו ו	Damping	
Polyamide film	3.000e+009	1400.000	0.330)	0.020	
Polyehylene	1.000e+009	940.000	0.330)	0.090	
Polyester film	1.400e+010	700.000	0.330)	0.020	
Polymethyl pentene	2.800e+009	8400.000	0.330)	0.100	
Polystyrene (toam,	2.000e+009	27.000	0.330)	0.080	
Polystyrene compo	1.900e+009	350.000	0.330)	0.020	
Polystyrene roam PR (filled, tale)	3.000e+006	1200.000	0.330))	0.100	
PP conclumer	1 400e+009	910.000	0.000	,)	0.030	
nn i lin	a ana ana . 	4000.000			0.000	
Properties or active n	nateriai:					
Description:	PP (f	illed, talc)				
Young's Modulus	(E): 300	0000000		N/m²	J	
Mass Density (rho): [130	0.000		kg/m²	J	
Poisson's number	(nu): 0.33	30000				
Demoing (delte):	0.09	0000				

图 7

你可以编辑材料数据,或者增加新的材料。只需要在 Description 旁边的 方框中输入一个新名称,并且输入这个新材料的参数。按"Add"来增加新的材料 到数据库。

如何计算新鼓纸的材料数据(未知材料特性的实验测定)

这里描述估算未知材料的力学性质的方法:

图 9 第二次预估值——基本符合

图 10 最终结果——符合(调整了阻尼系数)

- 先用 autoCAD 程序画好几何图形。画线所取位置基本以所画组件的中心 层为准。如果任何线段或弧线所代表的组件厚度有变化,就将其分割成 不同的线段或弧线。
- 输入近似的电气参数。
- 在 Material Parameters 材料参数中,输入实际的厚度。然后调整密度, 直到显示的质量接近实际值。
- 预估 E-modulus or Young's Modulus 杨氏模量:如图 8,先输入一个已 知材料的值做比较 。最好先不加防尘盖。
- 取比较多(多于 30 个点。这个数值在主画面的 Frequency range 中的 Number of frequencies 栏中设置)的频率点来计算频率响应曲线。为了 看到分裂震动,我们用很小的阻尼(<0。01)。指定电气参数。
- 根据已知材料频响曲线或已知分裂震动模型,调整杨氏模量。观察计算 出的频响曲线的峰值和谷值。见图 9。
- 调整阻尼值, 使计算出的频响曲线尽量接近实测曲线。见图 10。
- 然后,估计一下悬边。通过已知悬边的共振频率 Fs 可以查出硬度或杨氏模量(或 E modulus)。这时,也可以去掉其它组件的硬度,例如弹波。
- 最后是防尘盖。防尘盖会使鼓纸的模拟变复杂。因为,防尘盖贴在鼓纸 上,影响硬度。所以,要先模拟好鼓纸,最后再加防尘盖。
- 计算时,可以去除任何组件。这样可以帮助决定剩余组件的特性。

注意:要除去一些组件在频响曲线中的作用,用如下按钮:

电气参数

Electrical		
💥 Re:	6.2	Ohm
Le1:	0.1	mΗ
Le2:	0.1	mΗ
Rp:	9	Ohm
🞽 Bl:	71.001334	Tm

图 11

- Re (ohms)。注意,这个可以设置到 阻抗最小值 Zmin (在频率高于共振频率 Fs 的那段阻抗曲线中,选最小的阻抗值),以便更好的模拟真实的阻抗和频率响应曲线。红色标记 送表示数据是从 FINEMotor 输入进来的。
- 2. 等效电路模型有两个电感线圈。Le1 (mH) 是一个连续的电感线圈。
- 3. Le2 (mH)是第二个电感线圈。它跟一个电阻器(Rp)平行。
- 4. Rp (ohms)是一个与 Le2 平行的电阻器。
- 5. BI 是喇叭磁铁系统的驱动力。
- 6. Advanced settings(高级设置)是用来输入一个实测的阻抗曲线。

注意:为了得到一个匹配的频率响应曲线,我们必须先模拟出非常接近实测值的阻抗曲线。

Lumped Parameters 集中组件参数(T/S 参数)

点 逆 按钮,从 FINEMotor 输入 T/S 参数。

这个集中的样式符合图 2 中的 "Display simple model without break-up" (显示没有衰减的简单模型)。因为所有的组件都被模拟为简单而完美的质量和 顺性 (无限的硬度)。这通常只是被用来模拟一个没有衰减的快速频率响应曲 线。一般的 用法是可以用来检验 T/S 参数。当然,我们用一个真实的有限元 素模型的时候,这些参数可能都是不正确的。

Former	Vo	ice coil	Spider	Whi	zzer
General	Diap	ohragm	Surround	Dust	сар
🞽 Cs:	1.537545	mm/N	🞽 Air mass:	0.887372	g
Rs:	2.000000	Nm/s	🞽 Sd:	134.988032	cm²
🞽 Fs:	45.000000	Hz			
🞽 Qms	7.000000				
🞽 Mms	8.000000	g			
💥 : Impor	ted from FINE	Motor (TM)			

图 12

标记 送表示从 FINEMotor 输入。当我们从 FINEMotor 输入进来数据的时候, 震动面积 Sd 和空气负载质量都会由系统自动计算出来。

Former	Voice	e coil		Sp	ider	Whizzer
General	Diaphr	agm		Sur	ound	Dust cap
Surround par	ameters					
Mass, g	[2.51	1118		From Fir	nite element)
Mass fac	tor [0.500	0000	×		
🞽 Complian	ice, mm/N	6.254	4394	×	From Fir	nite element
Resistan	ce, Nm/s 🏼	1.000	0000	×	From Fir	nite element
ltems ma	rked with * a	are optic	onal for	r this	compone	nt

图 13

作为一个例子,上图显示了边的参数。注意,点 From Finite element... 按钮,可以计算出 mass(质量)。Mass factor(质量因素)用于此处,是说明边相 对于对真实的运动质量在多大程度上起作用。Compliance (m/N)(顺性)可以从 FINEMotor 直接输入 資或者用 From Finite element...按钮计算出来。 Resistance (Nm/s)(阻抗)是组件的震动衰减,它也可以用 From Finite element...按钮计算出来。 注意。集中组件参数可以用来帮助决定材质特性。每一个元素都可以被排 除在计算之外。例如当鼓纸或者悬边的 共振频率 Fo 已经知道的时候,这是非 常有用的。

Frequency Range 频宽

 Frequency range — 		Num	ber of frequencie	es:
From: 20	Hz to: 20000	Hz	60 🗄]
Apply	Advan	ced frequ	ency settings	

图 14

预设的频宽是从 20 到 20000 Hz。 计算时,所取的频率点数在 Number of frequencies 栏中。这些点均匀地(对数的)分布在整个频宽范围。 选取较少的频率点(比如 10 个)来减少计算时间,直到材料特性满意为止。然后,可以用 100 或更多的点来获得一个详尽的频率响应曲线。你可以在 Tools/Program Options/Calculation 里选择"Fast Solution of Differential Equations"(微分方程的快速解答)。如果不考虑在最高频的话,它的精确性依然是非常好的。

注意:频宽可以设置的范围可以从几赫兹到远远大于20K 赫兹的超声波范围。

高级频宽设定可以选择所有种类的线性和对数范围。

requency Ra	nge List		×
Frequency rai	nge list		
Range #:	Type:	Values:	# of freqs:
1	Logarithmic Logarithmic	20.00 Hz + 2500.00 Hz 2700.00 Hz + 20000.00	20 40
3	Linear	4300.00 Hz - 6670.00 Hz	8
1			
	Add	Edit Del	ete
		OK	Cancel

Frequency Range Editor		×
Frequency range Range Type:	Logarithmic range	
Low value:	2000 Hz	
High value:	7500 Hz	
No. of Frequencies:	15 💼	
Preview:	2000.0000 2198.0230 2415.6525 2654.8299 2917.6885 ▼	
ОК	Cancel	

图 16

Calculated Output 输出计算

M Frequency Response

频率响应曲线计算是自动的。系统可以计算任何一个测量点上的频率响应 曲线,通常是离喇叭实体一米(预设的)处,并且认为是无限障板的情况。在最 大的角度之内,系统可以计算出所有偏轴曲线。见图 2 中的"Acoustical"声学 栏。

Post-Processing 后处理

图 17

点 Sound Pressure 声压级按钮(在按钮栏或 Post-processing 下拉菜单中)可以看到如图 18 的频响曲线。同样,点 Impedance 阻抗按钮,可以得到 阻抗曲线,如图 19。

也可以选 '2D Geometry and Displacement '2D 几何图形和位移(带分裂 震动模式),或者 '3D Geometry and Displacement'3D 几何图形和位移(带分 裂震动模式)。见 15 到 17 页。

Curve Import and Export 曲线输入和输出

在声压级和阻抗曲线图中,点鼠标右键可以选择输入或者删除实测/模拟的曲线,如LOUDSOFT 二进制模拟文件(*.fsim)或 MLSSA、LMS 等的实测文件 (*.txt)。

也可以输出频响曲线和阻抗曲线为 LOUDSOFT 二进制模拟文件(*.fsim)。 这些曲线可以被用于其它 LOUDSOFT 软件。

图 18 中,较高的那条曲线(粉红色)是从实际喇叭测出的曲线。

图 18. 计算出的频响曲线 0/30/60 度(黑/篮/红) + 输入的(粉红)

注意: 在图中单击鼠标右键, 可以选择要显示的曲线。

Copy to Clipboard 复制到剪贴板

在单击鼠标右键弹出的菜单中,选择 'Copy to Clipboard' 复制到剪贴板。这样,可以把想要的图形复制到任何 windows 文件,如 Word 或者 email。

图 19. 计算的阻抗曲线(黑),电气阻抗(篮),机械阻抗(绿)和输入的阻抗曲线(粉红)

图 20. 取较少的频率点和较多的角度值可以得到平滑清晰的指向性曲线。

图 21

3D Animation 3D 动画

图 23

注意:用鼠标托拽图形,可将其转向任何角度!

图 24

3D 动画的菜单如上图所示。左边栏是动态频率点。可以从下拉菜单中或 者点上下箭头选择所需频率。

下一栏是振幅。图中选在'7mm'。也可以选'actual'实际振幅。但实际振幅仅在非常低频的情况才可以看得见。就算是选'Actual*10'实际振幅的十倍,也是很难看到的。最后一个选项'Actual*12dB/oct'是将振幅在共振频率上增加了12dB/oct。

因此我们建议用固定的振幅:低音用 5-10mm,高音用 1mm。

6803.747 Hz 💌 🎲 💔 7.0 mm	J	Step	-	12	•
		Step	•		
		0.1 Hz			
		0.2 Hz			
		0.3 Hz			
		0.4 Hz			
		0.5 Hz			
		0.6 Hz			
		0.7 Hz			
		0.8 Hz	\mathbf{T}		

图 25

下一栏是动画运动速度。最后一栏是一次震动分几步显示。如果需要抓 3D 动画的图形,可以点右侧的按钮,然后用鼠标右击图形,选 'copy to clipboard'即可。

🔽 🚳 🛤 🐻 💻 •

用这些按钮,你可以做:

- 1. 改变显示的扇区数(也就是,切掉多少)。
- 2. 显示有限元素线框或者固体组件。
- 3. 调节 Zoom(缩放), pan(面板坐标) and viewing distance(显示的距离)。
- 4. 设置图像平滑。
- 5. 设置背景颜色。

Plot Properties 图形特性

在所有图形上点击鼠标右键,可以编辑该图形:

Plot Layout				
Plot Linestyles				
Plot Title & Axis Labels				
X Axis settings				
Y Axis settings				
Show	•			
Import measured SPL data				
Remove imported SPL data				
Copy to Clipboard Export SPL data	Ctrl+C	-		

图 26

Plot Properties X				
X Axis Settings X Axis S Plot Layout	Settings Edit Plot Linestyles Plot Title and Axis Labels			
Plot Scale: Page Width 💌				
Show Plot Area Rectangle				
Show Bounding Rectangle				
Document style view				
ОК	Cancel <u>Apply</u> Help			

图 27. 图形版面

选 'Plot Line styles' 图形线条类型,可以改变线条的颜色; 选 'X axis settings' X 轴设置,可以更改频率刻度; 用 'Plot Title & Axis Labels' 图形名称和坐标轴标志,可以设置图形名称和坐标轴名。

也可以自由改变 Y 轴设置,如从 50 到 100dB,每 5dB 一格。

Buttons 按钮

图 28

用这些按钮可以控制所有组件。在模型中可以选择包括或去除任一个组件,或者也可以在 2D 或 3D 显示中隐藏它们。另外,你可以改变组件在 3D 显示中的颜色。在去除一个组件时,系统会重新计算而产生新的结果。

更高级用法是,任何组件对总声压级的影响,都可以被计算出来。可以选择包括或者去除某一个组件,以便观察该组件的输出声压级。这个功能非常有用!因为,对实际喇叭单体,不可能单独测量某一个组件的输出声压级。

UNDO 撤销

$\mathbf{N} \star \mathbf{O} \star \mathbf{v}$

用这两个按钮,可以撤销设计的操作(可以连续撤销 10 次)。当然,也 可以再执行某操作。

FINECone File Formats 文件格式

The FINECone 2.x file extension is .FCP.	_
Old FINECone 1.x files with .WCP extensi can be opened by selecting this filetype.	or
All files will be saved with .FCP extension.	

图29. FINECone 2.x 文件格式

Whizzer Cone Modelling 高音杯模型

图30. 高音杯模拟

🗖 DXF File Input Editor - <template>\6½ Woofer +whizzer.dxf 🛛 📃 🗖 🔀</template>					
File Settings					
Component:	Drawing layer:				
Diaphragm	DIAPHRAGM	-			
Surround	SURROUND	-	\frown		
Dust cap	DUSTCAP-DOME	-	ø o		
Former	FORMER	-	• /		
Voice coil	VOICECOIL	-			
Spider	SPIDER	-			
Whizzer	WHIZZER	-			
Magnet	- None selected -	-	G		
Pole	- None selected -	-			
 Show only Show Show all of Status: 	y FINECone elements y node points drawing elements		•		
Analysis is po	ossible				
ОК	Cano	el	Cursor position: (5.8284 , 71.6507)		

图 31

高音杯可以象其它组件一样操作。注意,画 DXF 文件时,高音杯应该在 它自己的层(Whizzer)中。这样,机械特性和声压级才会正确。

Ring radiator 环形发射式喇叭

图 32

环形发射式喇叭和其它设备(有一个固定的中心)可以模拟如下:

中心层应该画在 dome 层中。这样就可以在下拉菜单中选择'Calculate as Clamped',如图 33。

举例文件可以在 FINECone CD 中找到,或者登录<u>www.loudsoft.com</u> (下载)即可。

Agern Alle 3 – 2970 Horsholm – Denmark Tel: +45 4582 6291 – Fax: +45 4582 7242